Designing Heterogeneous Sensor Networks for Estimating and Predicting Path Travel Time Dynamics: An Information-Theoretic Modeling Approach

Tao Xinga, Xuesong Zhoub,*

aDepartment of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112-0561, USA
bDepartment of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112-0561, USA

Abstract

With a particular emphasis on the end-to-end travel time prediction problem, this paper proposes an information-theoretic sensor location model that aims to maximize information gains from a set of point, point-to-point and probe sensors in a traffic network. Based on a Kalman filtering structure, the proposed measurement and information quantification models explicitly take into account several important sources of errors in the travel time estimation/prediction process, such as the uncertainty associated with prior travel time estimates, measurement errors and sampling errors. After thoroughly examining a number of possible measures of information gain, this paper selects a path travel time prediction uncertainty criterion to construct a joint sensor location and travel time estimation/prediction framework. We further discuss how to quantify information gain for steady state historical databases and point-to-point sensors with multiple paths, and a heuristic beam-search algorithm is developed to solve the combinatorial sensor selection problem. A number of illustrative examples are used to demonstrate the effectiveness of the proposed methodology.

Key words: travel time prediction, sensor network design, automatic vehicle identification sensors, automatic vehicle location sensors

1. Introduction
1.1. Motivation

To provide effective traffic congestion mitigation strategies, transportation planning organizations and traffic management centers need to (1) reliably estimate and predict network-wide traffic conditions and (2) effectively inform and divert travelers to avoid recurring and non-recurring congestion. Traffic monitoring systems provide fundamental data inputs for public agencies to measure time-varying traffic network flow patterns and accordingly generate coordinated control strategies. In this paper, we focus on a series of critical and challenging modeling issues in traffic sensor network design, in particular, how to locate different types of detectors to improve path travel time prediction accuracy. Reliable end-to-end trip travel time information is critically needed in a wide range of intelligent transportation system applications, such as personalized route guidance and pre-trip traveler information provision.

Based on the types of measurement data, traffic sensors can be categorized into three groups, namely point sensors, point-to-point sensors, and probe sensors. Point sensors collect vehicle speed (more precisely, time-mean speed), volume and road occupancy data at fixed locations. With point detectors having significant failure rates, existing in-pavement and road-side traffic detectors are typically instrumented on a small subset of freeway links. Point-to-point sensors can track the identities of vehicles through mounted transponder tags, license plate numbers, or mobile phone Bluetooth signals, as vehicles pass multiple but non-contiguous reader stations. A raw tag read typically records a vehicle ID number, the related time stamp, and the location. If two readers at different locations sequentially identify the same probe vehicle, then the corresponding data reads can be fused to calculate the reader-to-reader travel time and the counts of identified vehicles between instrumented points.

Automatic license plate matching techniques have been used in the traffic surveillance field since the 1970s, and many statistical and heuristic methods have been proposed to reduce reading errors to provide reliable data association (Turner et al., 1998). Many feature-based vision and pattern recognition algorithms (e.g. Coifman et al., 1998) have been developed to track individual vehicle trajectories using camera surveillance data. Radio Frequency
Identification (RFID) technologies first appeared in Automated Vehicle Identification (AVI) applications during the 1980s and has become a mature traffic surveillance technology that produces various traffic measures with high accuracy and reliability. Currently, many RFID-based AVI systems are widely deployed in road pricing, parking lot management, as well as real-time travel time information provision. For instance, prior to 2001, around 51 AVI sites were installed and approximately 48,000 tags had been distributed to users in San Antonio, United States, which represents a 5% market penetration rate. Additionally, Houston’s TranStar fully relies on AVI data to provide travel time information currently (Haas et al., 2001). Many recent studies (e.g. Wasson et al., 2008, Haghani et al., 2010) started to use mobile phone Media Access Control (MAC) addresses as unique traveler identifiers to track travel time for vehicles and pedestrians.

Many Automatic Vehicle Location (AVL) technologies, such as Global Positioning System (GPS), and electronic Distance Measuring Instruments (DMI’s) provide new possibilities for traffic monitoring to semi-continuously obtain detailed passing time and location information along individual vehicle trajectories. As the personal navigation market grows rapidly, probe data from in-vehicle Personal Navigation Devices (PND) and cell phones become more readily available for continuous travel time measurement. On the other hand, privacy concerns and expensive one-time installation costs are two important disadvantages influencing the AVL deployment progress.

1.2. Literature review

Essentially, any application of real-time traffic measurements for supporting Advanced Traveler Information Systems (ATIS) and Advanced Traffic Management Systems (ATMS) functionalities involves the estimation and/or prediction of traffic states. Depending on underlying traffic process assumptions, the existing traffic state estimation and prediction models can be classified into three major approaches: (1) approach purely based on statistical methods, focusing on travel time forecasting, (2) approach based on macroscopic traffic flow models, focusing on traffic flow estimation on successive segments of a freeway corridor, (3) approach based on dynamic traffic assignment models, focusing on wide-area estimation of origin-destination trip demand and route choice probabilities so as to predict traffic network flow patterns for links with and without sensors. In this research, we are interested in how to place different types of sensors to improve information gains for the first statistical method-based travel time prediction applications.

In sensor location models for the second approach, significant attention (e.g., Liu and Danczyk, 2009, Danczyk and Liu, 2011, and Leow et al., 2008) has been devoted to placing point detectors along a freeway corridor to minimize the traffic measurement errors of critical traffic state variables, such as segment density and flow. The traffic origin-destination (OD) matrix estimation problem is also closely related to the travel time estimation problem under consideration. To determine the priority of point detector locations, there are a wide range of selection criteria, to name a few, “traffic flow volume” and “OD coverage” criteria proposed by Lam and Lo (1990), a “maximum possible relative error (MPRE)” criterion proposed by Yang et al. (1991) that aims calculate the greatest possible deviation from an estimated demand table to the unknown true OD trip demand.

Based on the trace of the a posteriori covariance matrix produced in a Kalman filtering model, Zhou and List (2010) proposed an information-theoretic framework for locating fixed sensors in the traffic OD demand estimation problem. Related studies along this line include an early attempt by Eisenman et al. (2006) that uses a Kalman filtering model to minimize the total demand estimation error in a dynamic traffic simulator and a recent study by Fei and Mahmassani (2011) that considers additional criteria, such as OD demand coverage, within a multi-objective decision making structure. Furthermore, in the travel time estimation problem, the Kalman filtering based framework has also been employed by many researchers. For instance, an ensemble Kalman filtering model is proposed by Work et al. (2008) to estimate freeway travel time with probe measurements.

Several recent studies have been conducted on the sensor location problem from different perspectives. Chen et al. (2004) studied the AVI reader location problem for both travel time and OD estimation applications. They presented the following three location section criteria: minimizing the number of AVI readers, maximizing the coverage of OD pairs, and maximizing the number of AVI readings. To maximize the information captured with regard to the network traffic conditions under budget constraints, Lu et al. (2006) formulated the roadside servers locating problem as a two-stage problem. The first stage was a sensitivity analysis to identify a subset of links on which the flows have large variability of travel demand, and more links were gradually selected to maximize the
overall sensor network coverage in the second stage. Sherali et al. (2006) proposed a discrete optimization approach for locating AVI readers to estimate corridor travel times. They used a quadratic zero-one optimization model to capture travel time variability along specified trips. In a recent study by Ban et al. (2009), link travel time estimation errors are selected as the optimization criterion for point sensor location problems, and a dynamic programming-based solution method is constructed to optimize the location of point sensors on link segments along a corridor. Li and Ouyang (2011) proposed a reliable sensor location method that considers probabilistic sensor failures, and developed a Lagrangian relaxation based solution algorithm.

1.3. Proposed approach

While significant progress has been made in formulating and solving the sensor location problem for travel time estimation and prediction, a number of challenging theoretical and practical issues remain to be addressed.

First, the optimization criteria used in the existing sensor location models typically differ from those used in travel time estimation and prediction. Due to the inconsistency between the two models, the potential of scarce sensor resources might not be fully achieved in terms of maximizing information gain for travel time estimation/prediction. For example, an AVI sensor location plan that maximizes sensor coverage does not necessarily yield the least end-to-end travel time estimation and prediction uncertainty if there are multiple likely paths between pairs of AVI sensors. As a result, a simplified but unified travel time estimation and prediction model for utilizing different data sources is critically required as the underlying building block for the sensor network design problem.

Second, most of the existing studies typically focus on real-time speed estimation errors (when using measured speed from point sensors to approximate speed on adjacent segments without sensors), they do not explicitly take into account uncertainty reduction and propagation in a heterogeneous sensor network with both point and point-to-point travel time measurements, as well as possible error correlation between new and existing sensors.

Third, how to quantify the information loss in an integrated travel time and prediction process, especially under non-recurring traffic conditions, has not received sufficient attention. Under recurring conditions, the traffic is more likely to be estimated and predicted accurately for links with sensor measurements. For locations without sensors, one can resort to historical information (e.g. through limited floating car studies) or adjacent sensors to approximate traffic conditions. However, under non-recurring traffic conditions due to incidents or special events, without real-time measurements from impacted locations, traffic management centers or traffic information provision companies might still offer biased traffic information, based on outdated historical estimates or incorrect approximation from unimpacted neighboring detectors.

By extending a Kalman filtering-based information theoretic approach proposed by Zhou and List (2010) for OD demand estimation applications, this research focuses on how to analyze the information gain for real-time travel time estimation and prediction problem with heterogeneous data sources. Since the classical information theory proposed by Shannon (1948) on measuring information gain related to signal communications, the sensor location problem has been an important and active research area in the fields of electrical engineering and information science. Various measures have been used to quantify the value of sensor information in different sensor network applications, where the unknown system states (e.g. the position and velocity of targets studied by Hintz and McVey, 1991) can typically be directly measured by sensors. In comparison, sensing network-wide travel time patterns is difficult in its own right because point sensors only provides a partial coverage of the entire traffic state. Using AVI data involves complex spatial and temporal mapping from raw measurements, and AVL data are not always available on a fixed set of links, especially under an early sensor network deployment stage.

There are a wide range of time series-based methods for traffic state estimation, and many studies (e.g. Okutani and Stephanedes (1984); Zhang and Rice, 2003; Stathopoulos and Karlaftis, 2003) have been devoted to travel time prediction using Kalman filtering and Bayesian learning approaches. To extract related statistics from complex spatial and temporal travel time correlations, a recent study by Fei et al. (2011) extends the structure state space model proposed by Zhou and Mahmassani (2007) to detect the structural deviations between the current and historical travel times and apply a polynomial trend filter to construct the transition matrix and predict future travel time. In this paper, we aim to present a unified Kalman filtering-based framework under both recurring and non-recurring traffic conditions. More importantly, a spatial queue-based cumulative flow count diagram is introduced to derive the important transition matrix for modelling traffic evolution under non-recurring congestions. Different
from existing data-driven or time-series-based methods, this paper derives a series of point-queue-model-based analytical travel time transition equations, which lay out a core modeling building block for quantifying prediction uncertainty. In addition, a steady-state uncertainty formula is presented to fully capture day-to-day uncertainty evolution and convergence of the sensor network in a long-term horizon.

The remainder of this paper is organized as follows. The overall framework and notation are described in the next section. In Sections 3 and 4, a Kalman filtering based travel time estimation and prediction model is presented for both recurring and non-recurring traffic conditions. A comprehensive discussion of information measure models is presented in Section 5. Section 6 describes the beam-search based sensor design model and solution algorithms. Finally, the proposed model is further extended to some complex cases considering AVI and AVL sensors in Section 7, followed by numerical experiment results on a test network shown in Section 8.

2. Notation and modeling framework overview

We first introduce the notation used in the travel time prediction and sensor network design problems.

2.1. Notation and problem statement

Sets and Subscripts:
- \(N \) = set of nodes.
- \(A \) = set of links.
- \(m \) = number of links in set \(A \).
- \(A' \) = set of links with point sensors (e.g. loop detectors), \(A' \subseteq A \).
- \(N'' \) = set of nodes with point-to-point sensors, \(N'' \subseteq N \).
- \(A'' \) = set of links with reliable probe sensor data, \(A'' \subseteq A \).
- \(\overline{A}' \) = sets of links that have been equipped with point sensors, \(\overline{A}' \subseteq A' \).
- \(\overline{N}' \) = sets of nodes that have been equipped with AVI sensors, \(\overline{N}' \subseteq N' \).
- \(n', n'', n''' \) = numbers of measurements, respectively, from point sensors, point-to-point sensors and probe sensors.
- \(n \) = number of total measurements, \(n = n' + n'' + n''' \).
- \(t \) = time index for state variables.
- \(h \) = travel time prediction horizon.
- \(d \) = subscript for day index.
- \(o \) = subscript for origin index, \(o \in O \), \(O \) = set of origin zones.
- \(s \) = subscript for destination index, \(s \in S \), \(S \) = set of destination zones.
- \(a,b \) = subscript for link index, \(a,b \in A \).
- \(i,j \) = subscript for node index, \(i,j \in N \).
- \(k, \lambda \) = subscript for path.
- \(p(i,j,k) \) = set of links belong to path \(k \) from node \(i \) to node \(j \).

Estimation variables
- \(t_{d,a} \) = travel time of link \(a \) on day \(d \).
- \(t_{d,o,s,k} \) = travel time on path \(k \) from origin \(o \) to destination \(s \), on day \(d \), \(t_{d,o,s,k} = \sum_{a \in p(o,s,k)} t_{d,a} \).

Measurements
- \(y'_{d,a} \) = single travel time measurement from a point sensor on link \(a \), on day \(d \).
- \(y''_{d,i,j,k} \) = single travel time measurement from a pair of AVI readers on path \(k \) and day \(d \) from node \(i \) to node \(j \), where the first and second AVI sensors are located at nodes \(i \) and node \(j \), respectively.
\(y_{d,a}^m \) = a set of travel time measurements from a probe sensor that contain map-matched travel time records on links \(a \) on path \(k \) and day \(d \) from node \(i \) to node \(j \), where \(a \in p(i, j, k) \).

Vector and matrix forms in Kalman filtering framework:

\(Y_d \) = sensor measurement vector on day \(d \), consisting of \(n \) elements.
\(T_d \) = travel time vector on day \(d \), consisting of \(m \) elements \(t_{d,a} \).
\(T_d = a \) priori estimate of the mean values in the travel time vector on day \(d \), consisting of \(m \) elements.
\(T_d^+ = a \) posteriori estimate of the mean values in the travel time vector on day \(d \), consisting of \(m \) elements.
\(T_d^h \) = historical regular travel time estimates using data up to day \(d \).
\(V_d \) = structural deviation on day \(d \).
\(P_d^- \) = a priori variance covariance matrix of travel time estimate, consisting of \((m \times m)\) elements.
\(P_d^+ \) = a posteriori error covariance matrix, i.e. conditional covariance matrix of estimation errors after including measurements.

\(\Sigma = a \) priori variance covariance matrix of structure deviation, consisting of \((m \times m)\) elements.
\(\Sigma^+ = a \) posteriori variance covariance matrix of structure deviation.
\(\bar{T} \) = vector of regular historical mean travel time estimates, consisting of \(m \) elements, \(\bar{T} = T_d^h \).
\(\bar{P} \) = error covariance matrix of historical travel time estimate, consisting of \((m \times m)\) elements, \(\bar{P} = P_d^- \).
\(H_d \) = sensor matrix that maps unknown travel times \(T_d \) to measurements \(Y_d \), consisting of \((n \times m)\) elements.
\(K_d \) = updating gain matrix, consisting of \((n \times m)\) elements, on day \(d \).
\(K_d^{nn} \) = updating matrix for non-recurring traffic estimations on day \(d \).
\(L_d(t, t+h) \) = non-recurring traffic transition matrix from time \(t \) to \(t+h \) on day \(d \).
\(w_d \) = system evolution noise vector for link travel times, \(w_d \sim N(0, Q_d) \).
\(Q_d = \) system evolution noise variance-covariance matrix, on day \(d \).
\(\mu_d \) = non-recurring derivation evolution noise vector for link travel times, \(\mu_d \sim N(0, Q_d^{\text{wn}}) \).
\(Q_d^{\text{wn}} = \) non-recurring derivation evolution noise variance-covariance matrix, on day \(d \).
\(q_{d,a} = \) systematic travel time variance on link \(a \).
\(\epsilon_d \) = combined measurement error term, \(\epsilon_d \sim N(0, R_d) \), on day \(d \).
\(R_d = \) variance-covariance matrix for measurement errors, on day \(d \).

Parameters and variables used in measurement and sensor design models

\(\phi_{i,j,k,a} = \) path-link incidence coefficient, \(\phi_{i,j,k,a} = 1 \) if path \(k \) from node \(i \) to node \(j \) passes through link \(a \), and 0 otherwise.
\(\tilde{\gamma}_{d,a}^m = \) stochastic link traversing coefficient for GPS probe vehicles, \(\tilde{\gamma}_{d,a}^m = 1 \) if GPS probe vehicles pass through link \(a \) on day \(d \), and 0 otherwise.
\(\epsilon_{d.o.s,k} = \) path travel time estimation error on path \(k \) from origin \(o \) to destination \(s \).
\(f_{o,s,k} = \) traffic flow volume on path \(k \) from origin \(o \) to destination \(s \).
\(TU_d = \) total path travel time estimation uncertainty on day \(d \).
\(\alpha = \) market penetration rate for vehicles equipped with AVI sensors/tags.
\(\beta = \) market penetration rate for vehicles equipped with AVL sensors.
\(l = \) subscript of sensor design solution index.
Consider a traffic network with multiple origins \(o \in O \) and destinations \(s \in S \), as well as a set of nodes connected by a set of directed links. We assume the following input data are available:

1. The prior information on historical travel time estimates, including a vector of historical mean travel time estimates \(\bar{T} \) and the corresponding variance-covariance matrix \(\bar{P} \).
2. The link sets with point sensor and point-to-point AVI sensor data, specified by \(A' \) and \(N'' \).
3. Estimated market penetration rate \(\alpha \) for point-to-point AVI sensors.
4. Estimated market penetration rate \(\beta \) for probe sensors, and set of links with accurate probe data \(A''' \).

The sensor network to be designed and deployed will include additional point sensors and point-to-point detectors that lead to sensor location sets of \(A' \) and \(N'' \), where \(\bar{A}' \subseteq A' \), \(\bar{N}'' \subseteq N'' \). In the new sensor network, through GPS map-matching algorithms, GPS probe data can be converted from raw longitude/latitude location readings to link travel time records on a set of links \(A''' \). In this study, we assume that probe data will be available through a certain data sharing program, (e.g. Herrera and Bayen, 2010), from vehicles equipped with Internet-connected GPS navigation systems or GPS-enabled mobile phones. It should be noticed that, depending on the underlying map-matching algorithm and data collection mechanism, only a subset of links in a network, denoted by \(A''' \) can produce reliable GPS map-matching results. For example, it is very difficult to distinguish driving vs. walking mode on arterial streets through data from GPS-equipped mobile phones, so typically only travel time estimates on freeway links are considered to be reliable in this case.

One of the key assumptions in our study is that the historical travel time information can be characterized by the \textit{a priori} mean vector \(\bar{T} \) and the estimation error variance matrix \(\bar{P} \). If point sensor or point-to-point data are available from sets \(\bar{A}' \) and \(\bar{N}'' \), then we can construct the mean travel time vector \(\bar{T} \) and estimate the variance of estimates in the diagonal elements of corresponding variance-covariance matrix \(\bar{P} \). For links without historical sensor measurements, the travel time mean estimate can be approximated by using national or regional travel time index (e.g. 1.2) and set the corresponding variance to a sufficient large value or infinity. One can assume zero for the correlation of initial travel time estimates. In the case of a complete lack of historical demand information, we can set \((\bar{P})^{-1} = 0 \).

It should be remarked that, measurements from a point sensor are typically instantaneous speed values observed at the exact location of the detector. Using a section-level travel time modeling framework (e.g., Lindveld et al., 2000), a homogenous physical link can be decomposed into multiple cells or sections, with the speed measurement directly reflecting only the section where the sensor is located. In some previous studies, the link or corridor speed can be estimated using the section based speed, while cells without sensors using approximated values from adjacent instrumented sections. As shown in Fig. 1, the travel times on section A and D are directly measured using sensors 1 and 2, respectively. Meanwhile, the travel times for sections B, C and E, as well as the entire corridor, are estimated using upstream and downstream sensors. There are a number of travel time reconstruction approaches, such as constant speed based methods and trajectory methods (Van Lint and Van der Zijpp, 2003).

![Fig. 1. Section-level travel time estimation](image-url)
In this study, for sections without point sensors, the above mentioned approximation error is modeled as prior estimation errors, which can be obtained through a historical travel time database by considering other related links such as adjacent links or links with similar characteristics. Furthermore, our proposed framework can be also easily generalized to a section-based representation scheme, where a section in Fig. 1 can be viewed as a link in our link-to-path-oriented modeling structure.

2.2. Generic state transition and measurement models

By adapting a structure state model for dynamic OD demand estimation by Zhou and Mahmassani (2007), this study decomposes a true travel time pattern into three modeling components:

\[
\text{true travel time} = \text{regular recurring pattern} + \text{structural deviations} + \text{random fluctuations.}
\]

Under this assumption, travel time estimation/prediction can be studied in two categories: recurring traffic conditions and non-recurring conditions. For travel time prediction under recurring conditions, structural deviation is considered as zero, and the regular travel time patterns/profiles can be constructed based on historical data for recurring traffic. On the other hand, for travel time prediction under non-recurring conditions, the structural deviation is further modelled in this study as a function of time-dependent capacity and time-dependent demand. Without loss of generality, this paper mainly focuses on time-dependent capacity reductions due to incidents, a major source of non-recurring congestion.

To further jointly consider both recurring and non-recurring traffic conditions in the sensor location problem, the overall system uncertainty under a certain sensor design is modeled as a probabilistic combination of recurring and non-recurring uncertainty measures:

\[
\text{overall system prediction uncertainty} = (1 - \rho_{NR}) \times \text{uncertainty under recurring conditions} + \rho_{NR} \times \text{uncertainty under non-recurring conditions},
\]

where \(\rho_{NR}\) represents the given probability of non-recurring events.

(i) State transition model

The state transition model of the travel time is written as

\[
T_d(t) = T_d^h(t) + V_d(t) + w_d, \quad w_d \sim N(0, Q_d)
\]

In Eq. (1), the travel time for each link is represented as a combination of three components: regular pattern, structural deviation and random fluctuation. The regular pattern \(T_d^h(t)\) is the time-dependent historical travel time average which is determined by the day-to-day regular traffic demand and capacity. For non-recurring traffic conditions, a structural deviation \(V_d(t)\) exists due to non-recurring congestion sources such as incidents, work zones and severe weathers. Considering a stationary congestion pattern, this study assumes that \(w_d\) follows a normal distribution with zero-mean and a variance-covariance matrix \(Q_d\). \(Q_d\) corresponds to random travel time variation magnitude, which is further determined by dynamics and stochasticity in the underlying traffic demand and road capacity supply. For example, the travel time variations are more significant on a congested freeway link with close-to-capacity demand flow volume, compared to a rural highway segment with low traffic volume and sufficient capacity where the speed limit could yield a good estimate most of the time. More specifically, \(q_{d,a}\) the (diagonal) variance elements of the matrix \(Q_d\) exhibit the travel time variability/uncertainty of each individual link, while the covariance elements should reveal the spatial correlation relationship (mostly due to queue spillbacks) between adjacent links in a network. We refer readers to a study by Min and Wynter (2011) for calibrating spatial correlations of link travel times.
(ii) General measurement model

In order to estimate the regular pattern $T^*(t)$ and structural deviation $V_d(t)$, a linear measurement model is constructed as:

$$ Y_d(t) = H_d(t) \times T^*(t) + \varepsilon_d, \text{ where } \varepsilon_d \sim N(0, R_d) \tag{2} $$

With the measurement model in Eq. (2), the travel times are estimated using the latest measurements $Y_d(t)$. Measurement vector Y_d is composed of travel time observations from point sensors, point-to-point sensors and probe sensors. The mapping matrix H_d, with $(n \times m)$ elements, connects unknown link travel time T_d to measurement data Y_d. Particularly, each row in the mapping matrix H_d corresponds to a measurement and each column corresponds to a physical link in the network. For an element at u^{th} row and v^{th} column of the matrix H_d, a value of 1 indicates that the u^{th} measurement covers or includes the travel time on the v^{th} link of the network, otherwise it is 0. With the measurement equation, the historical recurring travel time pattern is then updated through the Kalman filtering process. A detailed discussion on the mapping matrix H and the measurement error term is provided in Section 3.

2.3. Uncertainty analysis under recurring and non-recurring conditions

We now focus on the conceptual analysis of the uncertainty reduction and propagation. By assuming independence between different components in the structure state model (1), the total variance of the predicted travel time can be obtained by

$$ \text{var}(T_d(t)) = \text{var}(T^*_d(t)) + \text{var}(V_d(t)) + Q_d \tag{3} $$

Under recurring congestion conditions, the structural deviation $V_d(t) = 0$, which leads to

$$ \text{var}(T_d(t)) = \text{var}(T^*_d(t)) + Q_d \tag{4} $$

To reduce prediction error under recurring conditions, (e.g. at the beginning of each day d for pre-trip routing applications), we need to reduce the variance of the historical travel time estimates, $\text{var}(T^*_d(t))$, while the variance of inherent traffic process noises Q_d (due to traffic demand and supply variations) cannot be reduced and sets a limit for travel time prediction accuracy. Along this line, this article will first focus on updating the historical travel time pattern and the uncertainty reduction due to added sensors under recurring conditions. Under non-recurring conditions, in addition to the above mentioned uncertainty elements $\text{var}(T^*_d(t))$ and Q_d, the total prediction variance is mainly determined by the structural travel time deviation $V_d(t)$. Through a simplified spatial queue model, a detailed discussion is provided in Section 6, and we will focus on capacity reductions due to incidents.

2.4. Conceptual framework and data flow

Focusing on predicting end-to-end path travel time applications and considering future availability of GPS probe data on links A^m, the goal of the sensor location problem is to maximize the overall information gain $X^* = \arg\min_i z(X_j)$ by locating point and point-to-point sensors in sets A^* and N^*, subject to budget constraints for installation and maintenance. To systematically present our key modeling components in the proposed sensor design model, we will sequentially describe the following three modules.

Link travel time estimation and prediction module:
Given prior travel time information T_d^- and P_d^-, with traffic measurement vector Y_d that includes $y_{d,a}'$, $y_{d,i,j,k}'$ and $y_{d,a}''$, the link travel time estimation and prediction module seeks to update current link travel times T_d^+ and their variance-covariance matrix P_d^+.

Information quantification module:

With prior knowledge on the link travel time estimates T and P, the information quantification module aims to find the single-valued information gain $z(X_l)$ for the critical path travel times for a sensor design scenario X_l, represented by location sets A', N'', and A''', as well as AVI and AVL market penetration rates α and β.

Sensor network design module:

The sensor design module aims to find the optimal solution $X^* = \arg\min X_l z(X_l)$, subject to budget constraints for installation and maintenance. For each candidate solution X_l, this module needs to call the information quantification module to calculate $z(X_l)$. The optimal solution X^* produces optimal location sets A', N'', and A''', for a predicted AVI and AVL market penetration rates α and β, and predicted location set A''' with reliable travel time map-match results.

Fig. 2 illustrates the conceptual framework and data flow for the proposed modules. From sensor network design plans in block 1, we need to extract three groups of critical input parameters: AVI/AVL market penetration rates α and β at block 2, measurement error variance-covariance R in block 3, and sensor location mapping matrix H in block 4. Location mapping matrix H is derived from the sensor location sets A', N'', and A'''.

The link travel time estimation module uses a Kalman filtering model to iteratively update the travel time (blocks 9 and 10) and the corresponding error variance matrix (blocks 7 and 8), where the critical Kalman gain matrix K, calculated in block 6, is applied to the above two mean and variance propagation processes. Based on the estimation or prediction error variance statistics in blocks 7 and 8, the information quantification module derives the measure of information in block 11 by representing the path travel time estimation/prediction quality as a function of P^+ and P. By minimizing the network-wide path travel time estimation uncertainty, the sensor network design module finally selects and implements an optimized sensor plan so that point sensor, AVI, and AVL measurement data in block 13 can be produced from the actual sensor network illustrated by block 12.

One of the key features offered by the Kalman Filtering model is that although updating the travel time mean estimates from T^- in block 9 to T^+ in block 10 requires sensor measurements Y, the uncertainty propagation calculation from block 7 to 8 (i.e. updating P^+ from P^-) does not rely on the actual sensor data, as the uncertainty reduction formula in block 8 is a function of three major inputs: a priori uncertainty matrix P^-, measurement error range R, and sensor mapping matrix H. In other words, if a transportation analyst can reasonably prepare the above three input parameters, then he/she can apply the proposed analytical model to compute the information gain for a sensor design scenario and further assist the decision-maker to determine where and with what technologies sensor investments should be made in a traffic network.
3. System process and measurement models for estimating historical regular patterns

This section first introduces the travel time estimation and prediction model as the building block for the (upper-level) sensor design model. In particular, we want to highlight how a classical Kalman filtering model can be used to estimate link travel time using data from AVI and AVL sources, and further used to analytically estimate the uncertainty propagation associated with the travel time mean estimates. Additionally, the discussion focuses on how sensor mapping matrix H and measurement error matrix R should be constructed, as they form the basis for the proposed information measuring model. There are two essential sets of equations within a Kalman filtering structure: stochastic process model, detailed in Section 3.1, and measurement model, described in Section 3.2.
3.1. Process model of day-varying traffic system under recurring conditions

In this study, link travel times are characterized as random variables through stochastic linear process models. Two modeling approaches are available to capture travel time variations with different settings of time horizon and resolution: within-day dynamic and day-to-day dynamic. Specifically, the within-day model estimates current travel time based on the travel time at the previous time interval(s) on the same day, with a typical time resolution of 5 or 15 min. Without loss of generality, this study ignores the time-dependent travel time dimension in the estimation equation below, and will discuss the time-dependent state transition equation in Section 4.

3.2. Measurement model

Shown in Eq. (2), a linear measurement model is used to map the measurement vector Y_d to the travel time vector T_d (as state variables) by taking into account measurement error term e_d from variant sources.

The following three equations show how H_d is constructed for a specific type of measurements on each day d.

For a point sensor on link a,

$$y_{d,a} = t_a + e_{d,a}, \forall a \in A'.$$

For a pair of point-to-point sensors that capture end-to-end travel time from node i to node j through path k,

$$y_{d,i,j,k} = \sum_a (\phi_{i,j,k,a} t_a) + e_{d,i,j,k}, \forall i, j \in N''.$$

For an AVL sensor/probe on link a,

$$y_{d,a} = \gamma_{d,a} \times t_a + e_{d,a}, \forall a \in A''.$$

A measurement in this model might be referred to an average value of multiple raw samples within a certain time period (e.g. from 8:00 AM to 8:15AM). The error term ϵ in the above equations is a combined error term that reflects the overall effect of errors from the data conversion, measurement reading and sampling processes.

Data conversion error: Typically, only time-mean speed data are available from a point sensor, and the travel time value (i.e. space-mean speed) needs to be inferred and approximated from a point speed reading. This introduces significant data conversion errors, depending on the placement of a point sensor on a link (e.g., the relative location with respect to the tail of a queue from the downstream node of a link). In addition, a single-loop detector has to use the observed occupancy and flow counts to calculate the point speed value, which leads to sensor measurement errors. GPS location data (in terms of longitude, latitude, point speed, bearing and timestamp) need to be map-matched to specific links in the study network to estimate corresponding link travel times. This map-matching process again brings data conversion errors to the final link travel time estimates.

Sensor reading error: Point sensors that are not carefully calibrated are more likely to generate large measurement noises. The detection rates of AVI readers are relatively low when vehicle tags are not powered by batteries. The data quality of GPS location readings depends on the number of satellites that a GPS receiver can “see”.

Sampling error: As a measurement can come from multiple readings, the variance of sampling error, e.g. for an AVI measurement that is aggregated from $g_{d,i,j,k}$ samples, can be described as

$$\text{var}(\epsilon_{d,i,j,k}) = \frac{\text{var}(T_{d,i,j,k})}{g_{d,i,j,k}}$$

If we assume there is no correlation between link travel times along path k from node i to node j, then

$$\text{var}(T_{d,i,j,k}) = \sum_{a \in p(i,j,k)} \text{var}(T_{d,a}) = \sum_{a \in p(i,j,k)} q_{d,a}.$$

Assuming there are a total of $f_{d,i,j,k}$ vehicles traveling from node i to node j through path k, then the AVI market penetration rate α can be derived as $a = g_{d,i,j,k} / f_{d,i,j,k}$. That is, when the market penetration rate
increases, the size of samples also becomes larger, leading to a smaller sampling error and a more reliable travel time measurement.

In summary, the magnitude of the combined error \(e_d \) is determined by a number of external factors, and there are also possible error correlations among different sensors depending on traffic conditions. For simplicity, the following analysis assumes the combined errors belong to a white normal probability distribution with zero-mean and a variance-covariance matrix \(R \).

As point and AVL detectors are installed at fixed locations, the corresponding sensor mapping matrices, denoted as \(H'_d \) and \(H''_d \), typically remain the same within the study horizon, that is \(H'_d = H' \) and \(H''_d = H'' \). Even with more accurate vehicle based link travel time samples, the AVL-based sensors still have two major limitations: low market penetration rate and stochastic temporal coverage. Specifically, similar to the point-to-point AVI sensor, a large sampling error is introduced to probe sensor measurements under a low market penetration rate, as shown by \(\text{var}(\epsilon'_{d,a}) = \text{var}(T_{d,a})/g'_{d,a} \), where \(g'_{d,a} \) is the number of probe samples on link \(a \) on day \(d \), and \(\text{var}(T_{d,a}) \) is the systematic variance of link travel time on link \(a \) on day \(d \). The same number of probe samples can generate smaller measurement errors on a link with low travel time variability compared to a link with highly dynamic traffic. Moreover, individual travelers with GPS probes can use different paths and links on different days, which leads to a day-varying and stochastic sensor mapping matrix \(H''_d \) that consists of stochastic link traversing coefficient \(\tilde{\gamma}'_{d,a} \) for GPS probe vehicles.

3.3. Travel time estimation and prediction models

Given above process and measurement models, we are ready to derive a Kalman Filtering based estimation and prediction model to update link travel times with different types of measurements.

In the following discussion, we need to distinguish two states of each day \(d \): (1) \textit{a priori} state before the start of the current day (e.g. morning peak hour), corresponding to the predicted travel time \(T_d^- \) and uncertainty \(P_d^- \), and (2) \textit{a posteriori} state after the morning peak hour of current day, corresponding to estimated travel time \(T_d^+ \) and uncertainty \(P_d^+ \) after taking into account new measurements \(Y_d \) available on day \(d \). We further define the \textit{a priori} estimate error \(\tilde{T}_d^- \) as the difference between the true travel time vector \(T_d \) and the \textit{a priori} link travel time estimate \(T_d^- \), where \(\tilde{T}_d^- = T_d - T_d^- \). The \textit{a posteriori} estimate error \(\tilde{T}_d^+ \) is the difference between the true travel time vector \(T_d \) and the \textit{a posteriori} link travel time estimate \(T_d^+ \). Define \(\tilde{T}_d^+ = T_d - T_d^+ \), correspondingly, the variance-covariance matrices of the \textit{a priori} and \textit{a posteriori} estimate error are expressed as

\[
\begin{align*}
P_d^- &= E[(\tilde{T}_d^-)^T] = E[(T_d - T_d^-)(T_d - T_d^-)^T] = \text{cov}(T_d - T_d^-) \\
P_d^+ &= E[(\tilde{T}_d^+)^T] = E[(T_d - T_d^+)(T_d - T_d^+)^T] = \text{cov}(T_d - T_d^+)
\end{align*}
\]

3.3.1. Travel time estimate updating

In Kalman filtering, the \textit{a posteriori} travel time estimate \(T_d^+ \) is updated through a linear function of the \textit{a priori} estimate \(T_d^- \) and a weighted difference \(Y_d - HT_d^- \), which is the error of \textit{a priori} estimate, otherwise known as the innovation residual or measurement residual.

\[
T_d^+ = T_d^- + K(Y_d - HT_d^-)
\]

3.3.2. Kalman gain factor calculation and uncertainty propagation

By assuming the measurement error covariance \(R_d \) is uncorrelated to \(K_d \) and \(Y_d \), a general formulation for the variance-covariance matrix of the \textit{a posteriori} estimate error can be derived (see appendix for equation derivation).

\[
P_d^+ = (I - K_d H_d)P_d^- (I - K_d H_d)^T + K_d R K_d^T
\]

The above equation shows the propagation of the estimation error covariance for any given matrix \(K_d \). In Eqs. (12) and (13), matrix \(K_d \) is used as the gain factor to update the \textit{a posteriori} estimation \(T_d^+ \) and its error covariance.
In Kalman filtering, K_d is determined by minimizing the trace of a posteriori estimate error matrix, which is setting the first derivative of Eq. (13) to 0 as follows:

$$\frac{\partial \text{trace}(P_d^+)}{\partial K_d} = -2(H_d P_d^-)^T + 2K_d(H_d P_d^- H_d^T + R_d) = 0$$ \hspace{1cm} (14)$$

The optimal form of K_d is then derived as

$$K_d = P_d^- H_d^T (H_d P_d^- H_d^T + R_d)^{-1}$$ \hspace{1cm} (15)$$

Under the optimal formulation of the Kalman gain matrix in Eq. (15), a simplified expression for the estimation error covariance is derived as

$$P_d^+ = (1 - K_d H_d) P_d^-$$ \hspace{1cm} (16)$$

Other formulas of the estimation error covariance are available, for example,

$$P_d^+ = \left((P_d^-)^{-1} + H^T R^{-1} H\right)^{-1}$$ \hspace{1cm} (17)$$

Consider a single link shown in Fig. 3 where a link from a to b corresponding to sensor mapping matrix $H = 1$. In the historical travel time database, the estimated travel time follows a normal distribution with a mean of 15 min and a standard deviation of 5 min (i.e., $P_d^- = 25$). Given a new measurement $Y_d = 20$ min with a measurement error variance of 5 min, based on Eq. (15), we can calculate the optimal Kalman filtering gain factor as $K_d = 25/(25+5) = 5/6$. Then the travel time estimate is updated by Eq. (12), calculated as $T_d^+ = 15 + (5/6)(20-15) = 19.6$, and the posterior estimation variance is reduced to $P_d^+ = (1 - (5/6)) \times 25 = 1.8$.

The calculation results are summarized in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Calculation results of single-link example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior estimate</td>
<td>Measurement</td>
</tr>
<tr>
<td>Travel time (min)</td>
<td>$T_d^- = 15$</td>
</tr>
<tr>
<td>Variance (min2)</td>
<td>$P_d^- = 25$</td>
</tr>
</tbody>
</table>

3.3.3. Travel time prediction

After updating travel time mean estimate and its covariance on day d, we now need to predict travel time and its uncertainty range for the same time interval of the next day, $d+1$. According to the system process equation (1), the mean estimate can be simply extended across days under recurring traffic conditions.

$$T_{d+1}^- = T_d^+$$ \hspace{1cm} (18)$$

However, by taking into account the unpredicted random realizations of traffic demand and capacity, characterized by the system error matrix Q_d, we have to increase the uncertainty estimate for T_{d+1}^-

$$P_{d+1}^- = P_d^+ + Q_d$$ \hspace{1cm} (19)$$

With the above measurement updating equations (12-17) and prediction equations (18-19), the Kalman filtering based travel time estimation and prediction model is able to recursively correct the link travel time estimate from streaming traffic measurements and dynamically adjust the error covariance matrix that indicates the uncertainty range of the prediction results.
4. Travel time prediction under non-recurring conditions

Under non-recurring congestion conditions, the structural deviation $V_d(t)$ is considered under various demand/capacity changes. The process equation of the structural deviation in real-time prediction applications can be written as a state space model:

$$ V_d(t + h) = L_d(t, t + h)V_d(t) + \mu_d(t + h), \quad \mu_d(t + h) \sim N(0, Q_{dNR}^d) \quad (20) $$

In Eq. (20), the transition matrix L denotes the process matrix of the structure derivation. The process error μ is considered as a normally distributed random noise. Following we will discuss the non-recurring traffic estimation and prediction with and without sensor coverage, and present two case studies taking incident as a demonstration example.

4.1. Traffic estimation and prediction equations

For links with sensor coverage, a measurement \hat{V}_d is obtained for each time interval. Similar to the derivation for the regular pattern traffic, the estimation equations for the non-recurring structural deviation and its uncertainty are

$$ V_{d+}^d(t) = V_{d-}^d(t) + K_{NR}(Y_d(t) - H_d(t)T^h(t) - H_d(t)V_{d-}^d(t)) \quad (21) $$

$$ \Sigma_{d+}^d = \left((\Sigma_{d-})^{-1} + H_d^T(t)R^{-1}H_d(t)\right)^{-1} \quad (22) $$

The Kalman gain factor K_{NR} can be derived similar to the recurring traffic model. The prediction equations for the structural deviation and its uncertainty are

$$ V_{d-}^d(t + h) = L_d(t, t + h)V_{d+}^d(t) \quad (23) $$

$$ \Sigma_{d-}^d(t + h) = L_d(t, t + h)\Sigma_{d+}^d(t)L_d^T(t, t + h) + Q_{dNR} \quad (24) $$

With the derivation of the structural deviation, the predicted travel time variance under non-recurring conditions is represented as

$$ P_d^d(t + h) = P_{d+}^d(t + h) + \Sigma_{d+}^d(t + h) + Q_d \quad (25) $$

$$ = P_{d+}^d(t + h) + Q_d + L_d(t, t + h)\Sigma_{d+}^d(t)L_d^T(t, t + h) + Q_{dNR} $$

Eq. (25) computes the prediction uncertainty at time $(t+h)$. By comparing to the regular pattern uncertainty prediction in Eq. (19), we noticed that the uncertainty of non-recurring conditions is considered as a linear combination of the regular pattern and the structural deviation.

For links without sensor coverage, no measurement is available of the estimation for the structure derivation V_d.

Therefore, predicted values for both structure derivation $V_d(t)$ and link travel time $T_d(t)$ will be biased, and an extra error has to be considered into the system uncertainty estimation and prediction. In this study we use the maximum V_d across all links with sensors from the historical database as a way to estimate the potential bias magnitude on links without sensors. As a result, the corresponding elements in the prior structure deviation uncertainty matrix Σ_i^d have large values for links without sensor coverage, and relatively small values for links equipped with sensors.

4.2. Single bottleneck model with incident

We now shift our focus on how to compute the essential transition matrix $L_d(t, t + h)$, with a single bottleneck case study. Newell’s kinematic wave model (Newell, 1993) is used in this research to capture forward and backward waves as results of bottleneck capacities. Its simplified form of traffic flow models is particularly attractive in
establishing theoretically sound and practically operational traffic transition models on bottlenecks. Interested readers are referred to a number of related studies on Newell’s kinematic wave model, e.g. the model calibration effort by Hurdle and Son (2000), extensions to node merge and diverge cases by Yperman et al. (2005) and Ni et al. (2006).

Fig. 4. Cumulative flow count curve for a single bottleneck with reduced capacity due to an incident

Considering Fig. 4, a recurring congestion is assumed with a constant queue discharging rate C. An incident under consideration begins at time s and ends at time e with a reduced capacity C^R, and this capacity is restored back to C after time e. In order to derive the transition matrix L for updating the structural deviation $V(t)$, we further examine the additional delay in a detailed plot.

Shown in Fig. 5, $V(t) = t - t'$, where t' is the original leaving time from the queue under recurring congestion for the same vehicle. Δ is denoted as the number of vehicles can be discharged under recurring congestion from s to t', and we can derive $\Delta = C \times (t' - s) = C^R \times (t - s)$. That is, $t' - s = \Delta / C = (C^R / C)(t - s)$. Thus, the travel time structure deviation term can be determined as

$$V(t) = (t - s) - (t' - s) = (t - s) \times \left(1 - \frac{C^R}{C}\right). \tag{26}$$

After the incident ending time e, $V(t)$ becomes a constant value $(e - s) \times \left(1 - \frac{C^R}{C}\right)$.

Fig. 5. A zoom-in view on capacity reduction
We can further examine the transition matrix \(L \) in three cases (as shown in Fig. 4), with a pre-defined prediction period \(h \) (e.g. 15 min). According to the prediction equation (23) for the structure derivation, the transition matrix \(L \) (a single value in this example) is derived as the ratio of structure deviation terms between current time \(t \) and future time \(t+h \).

\[
L(t,t+h) = \frac{V(t+h)}{V(t)}
\]
(27)

Table 2
Derivation of transition matrix \(L \) for different time periods

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>(t)</th>
<th>(t+h)</th>
<th>(V(t))</th>
<th>(V(t+h))</th>
<th>(L(t,t+h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Detection</td>
<td>(s < t < e-h)</td>
<td>(s+h < t+h < e)</td>
<td>((t-s) \times \left(1 - \frac{C^R}{C} \right))</td>
<td>((t+h-s) \times \left(1 - \frac{C^R}{C} \right))</td>
<td>(\frac{t+h-s}{t-s})</td>
</tr>
<tr>
<td>Late Detection</td>
<td>(e-h < t < e)</td>
<td>(t+h > e)</td>
<td>((t-s) \times \left(1 - \frac{C^R}{C} \right))</td>
<td>((e-s) \times \left(1 - \frac{C^R}{C} \right))</td>
<td>(\frac{e-s}{t-s})</td>
</tr>
<tr>
<td>Post-incident Detection</td>
<td>(t > e)</td>
<td>(t+h > e+h)</td>
<td>((e-s) \times \left(1 - \frac{C^R}{C} \right))</td>
<td>((e-s) \times \left(1 - \frac{C^R}{C} \right))</td>
<td>1</td>
</tr>
</tbody>
</table>

As shown in Table 2, with the prediction time stamp \(t \) is located in different time periods, the transition matrix \(L \) is derived in different forms. Fig. 6 gives an illustrative example on how the transition coefficient \(L \) varies according to time \(t \), by assuming the prediction period \(h = 15 \) min and a typical incident duration \(e-s = 30 \) min.

![Fig. 6. Illustration of time-dependent transition coefficient L](image)

The above example demonstrates how to derive the transition matrix \(L \) under non-recurring conditions with short-term capacity drops. Similar matrices could be derived for severe weather and work zone cases. Obviously, \(L(t,t+h) \) is a time-dependent and situation-dependent variable that needs to determine in a case-by-case basis in real-world travel time prediction applications. For the sensor location problem under consideration, we need to assume and use an aggregated transition matrix for simplicity. In our experiments for the sensor location problem, we consider the following typical case: average incident duration = \((e-s) = 30 \) min, incident reporting period = \((t-s) = 15 \) min, and this leads to a typical value \(L = 2 \) which will be used in the experiments in Section 8.

5. Measure of information for historical traffic patterns
One of the fundamental questions in sensor location problems is which criteria should be selected to drive the underlying optimization processes. Eqs. (13-17 & 19) in the above travel time estimation and prediction model offer an analytical model for quantifying the estimation/prediction error reduction due to additional measurements provided by new sensors. As the process variance-covariance matrix is assumed to be constant, the travel time uncertainty measure in this section uses the a posteriori estimation error covariance P^* as the basis to evaluate the information gain. A challenging question then is how to select single-value information measures for a sensor design plan. To this end, we first examine two commonly used estimation criteria, namely, the mean-square error and entropy. We then propose total path travel time estimation variance as a new measure of information for end-to-end trip time prediction applications.

5.1. Trace and entropy

As shown in Eq. (14), when selecting the gain factor K to utilize new measurements, the classic Kalman filter aims to minimize the mean-square error, i.e., the trace of P_d^*. The trace of the variance covariance matrix $tr(P_d^*)$ is the sum of the diagonals of the matrix, which is equivalent to the total variance of link travel time estimates for all links:

$$tr(P_d^*) = \sum_{a=1}^{m} \text{cov}(t_{d,a}, t_{d,a}) = \sum_{a=1}^{m} \text{var}(t_{d,a})$$

(28)

While the trace does not consider the effects of correlation between travel times of adjacent links, an alternative measure of information is entropy which is commonly used in information theory applications. For a discrete variable, Shannon’s original entropy is defined as the number of ways in which the solution could have arisen. For a continuously distributed random vector T, on the other hand, the entropy is measured by $-E(\ln f(T))$, where f is the joint density function for vector T. If travel time T in our study is assumed to follow a normal distribution, then its entropy is computed as $\theta + \frac{1}{2}\ln(\det(P^*))$, where θ is a constant that depends on the size of T, the total number of links in our study network. The entropy measure is proportional to the log of the determinant of the covariance matrix. By ignoring the constant θ and the monotonic logarithm function, we can simplify the entropy-based information measure for the a posteriori travel time estimate as $\det(P^*)$. The determinant of the variance covariance matrix, as a measure of information, is also known as the generalized variance. Mathematically, the trace and determinant of the variance covariance matrix P_d^* can be calculated from the sum and product, respectively, of the eigenvalues of P_d^*. Since the determinant considers the variance and covariance in the matrix, a smaller determinant is desirable because this indicates a more accurate estimate.

5.2. Total path travel time estimation uncertainty

This study proposes a new measure of information to quantify the network-wide value of information, based on the travel time estimation quality of critical OD/paths.

The travel time estimation uncertainty of path k from origin o to destination s can be calculated from the posterior travel time estimate variance-covariance matrix P_d^*:

$$e_{d,o,s,k} = \sum_{a \in p(o,s,k)} \text{var}(t_{d,a}) + 2 \sum_{a < b, a \in p(o,s,k), b \in p(o,s,k)} \text{cov}(t_{d,a}, t_{d,b})$$

(29)

where $\text{var}()$ and $\text{cov}()$ are variance and covariance coefficients in the link travel time uncertainty matrix, respectively. Compared to trace or entropy based information measures, the proposed path travel time based measure can better capture the possible correlation between traffic estimates along a path, with the covariance portion of the estimation error matrix.
A similar equation can be derived for travel time prediction based uncertainty measure, using the travel time estimate variance-covariance P_d matrix. For sensor location decisions that jointly consider recurring and non-recurring conditions, an integrated uncertainty matrix can be generated from recurring travel time uncertainty P^{-} and non-recurring structure derivation uncertainty Σ^{-}:

$$P_D = (1 - \rho_{\text{incident}} - \rho_{\text{workzone}} - \rho_{\text{weather}}) \times P^{-\text{recurring}} + \rho_{\text{incident}} \Sigma^{-\text{incident}} + \rho_{\text{workzone}} \Sigma^{-\text{workzone}} + \rho_{\text{weather}} \Sigma^{-\text{weather}}.$$

Weighted by the path flow volume of different origin-destination pairs $f_{o,s,k}$, the overall estimation uncertainty of the network-wide traffic conditions on day d can be determined from the following equation:

$$TU_d = \sum_{o,s,k} \left(e_{d,o,s,k} \times f_{o,s,k} \right)$$

(30)

The above total path travel time estimation uncertainty measure includes three important components: (1) the sum of elements in the variance covariance matrix for link travel time estimates; (2) the sum of the travel time variance for each feasible or critical path in the network; and (3) weights of path flow volume for different paths. As the path travel time estimation accuracy (as opposed to individual link travel times) is the ultimate information quality requirement by commuters traveling on various routes, this measure of information can capture the high-level monitoring performance of a sensor network. In relation to the trace and entropy measures, the total path travel time estimation uncertainty can be viewed as a more appropriate indicator for system-wide information gains.

6. Sensor design model and beam search algorithm

The proposed sensor network design model is essentially a special case of the discrete network design problem, so an integer programming model, shown below, can be constructed to find the optimal sensor location solution.

Min TU

Subject to

Budget constraint:

$$\pi' \sum_a x'_a + \pi'' \sum_i x''_i \leq \pi$$

(31)

Traffic pattern uncertainty propagation constraint under recurring and non-recurring conditions (Eqs. 17, 19, 22, 24).

Sensor mapping matrix constraint:

$$H_d = \text{function} \left(A' = [x'_a], N'' = [x''_i], \gamma_{d,a}, \alpha, \beta \right) \quad d = 0,1,...,D$$

(32)

D = a sufficiently large day number for measure of information to reach convergence.

$x'_a = 1$ if a point sensor is installed on link a, 0 otherwise.

$x''_i = 1$ if an AVI sensor (point-to-point sensor) is installed on node i, 0 otherwise.

π', π'' = installation and maintenance costs for point sensors and point-to-point sensors.

π = total available budget for building or extending the sensor network.

In the above objective function, the overall system uncertainty matrix P_D^{-} is calculated as a probabilistic combination of recurring and non-recurring traffic variances. Structure derivations from different non-recurring traffic conditions are considered in the total system uncertainty with corresponding probabilities. For links with sensors, the structure derivation uncertainty is aggregated and averaged from historical measurements (e.g. 95% or 2σ for normal distribution). For links without sensor, we will take the maximum of the structure derivation from limited historical database.
H_j is determined by the sensor location set $A' = [x'_{a}]$ and $N'' = [x''_u]$, randomly generated link traversing coefficient for GPS probe vehicles $P''_{m,s}$, and AVI and AVL market penetration rates α and β.

Essentially, the goal of the above sensor location model is to add sensor information from spatially distributed measurements to minimize the weighted uncertainty associated with the path travel time estimates. In this study, a branch-and-bound search procedure can be used to solve the integer programming problem. To reduce the computational complexity, a beam search heuristic algorithm is implemented in this study.

Given prior information on the link travel time vector and its estimation error covariance from historical database, the proposed algorithm tries to find the best sensor location scenario from a set of candidates under particular budget constraints. Based on a breadth-first node selection mechanism, the beam search algorithm branches from the nodes level by level. At each level, it keeps only φ promising nodes, and prunes the other nodes permanently to limit the total number of nodes to be examined. φ is typically referred to as the beam width, and the total computational time of the beam search algorithm is proportional to the selected beam width.

Beam search algorithm

Step 1: Initialization
Generate candidate link set LC and candidate node set NC for point and point-to-point sensors, respectively.
Set the active node list $ANL = \emptyset$. Create the root node u with $A'(u) = \emptyset, N''(u) = \emptyset$, search level $sl(u) = 0$, where u is search node index. Insert the root node into ANL.

Step 2: Stopping criterion
Terminate and output the best-feasible solution under one of the following conditions:
(1) If all of the active nodes in ANL have been visited,
(2) The number of active nodes in memory is exceeded.

Step 3: Node generation and evaluation
For each node u at search level sl in ANL, remove it from ANL, and generate child nodes:
- Scan through the candidate sets LC, if a link a is not in $A'(u)$, generate a new child node v' where $A'(v') = A'(u) \cup a, N''(v') = N''(u), sl(v') = sl(u) + 1$.
- Scan through the candidate sets NC, if a node i is not in $N''(u)$, generate a new child node v'' where $N''(v'') = N''(u) \cup i, A'(v'') = A'(u), sl(v'') = sl(u) + 1$.
For each newly generated node v, calculate the objective function through P_D^- in Eq. (30). If the budget constraint is satisfied for a newly generated node, add it into the ANL.

Step 4: Node filtering
Select φ best nodes from the ANL in the search tree, and go back to Step 2.

In the above beam search algorithm, the total computational time is determined by the number of nodes to be evaluated, which depends on the beam width φ and the size of the candidate sensor links/nodes. For each node in the tree search process, the complexity is determined by the evaluation of the objective function, which can be decomposed into three major steps: (1) calculating P^+ from $H^T R^{-1} H$, (2) calculating the inverse of the covariance matrix $(P^+)^{-1}$, and (3) calculating the path travel time uncertainty as a function of P_D^-. The first step involves two matrix multiplications: $H^T R^{-1}$ and $(H^T R^{-1}) H$. Because H is an $(n \times m)$ matrix and R is an $(n \times n)$ matrix, the first step has a worst-case complexity of $O(m^2 n)$, and calculating the inverse of matrix leads to an $O(m^3)$ operation if the Gaussian elimination method is used.

For a large-scale sensor network design application, we can adopt three strategies to reduce the size of the problem and therefore the computational time. First, one can focus on critical OD pairs with significant volumes. Second, one can aggregate original OD demand zones into a set of super zones within a manageable size, with this strategy being especially suitable for a subarea analysis where many OD zones outside the study area can be consolidated together. Third, we can reduce the size of candidate AVL sensor nodes and point sensor links in order to decrease the number of search nodes to be evaluated.
7. Complex cases for updating historical traffic patterns

7.1. Quantifying steady state information gain

To consider long-term information gains of a sensor network in monitoring the travel time dynamics, the following discussion aims to derive the steady-state results of uncertainty reduction associated with a fixed sensor network design plan. Considering both point and AVL sensors, we first assume constant Q, R and H across different days, the travel time estimation error covariance updating equation as seen in Eq. (33), which was combined from Eqs. (16) and (19),

$$P_d^- = (I - K_{d-1}H)P_{d-1}^- + Q$$ \hspace{1cm} (33)

Under steady state conditions, the travel time estimation error covariance will achieve a constant state as $P = P_d^- = P_{d-1}^-$ after a number of updates. By applying the optimal formulation of Kalman gain K in Eq. (15), the steady estimation error covariance P is rewritten as

$$PH^T(HPH^T + R)^{-1}HP = Q$$ \hspace{1cm} (34)

or

$$P = (I - PH^T(HPH^T + R)^{-1}H)P + Q$$ \hspace{1cm} (35)

Eq. (35) is known as Algebraic Riccati Equation. When numerically solving this equation, the steady-state travel time estimation error covariance matrix for a long-term sensor location problem is obtained.

![Fig. 7. Steady-state travel time estimation variance](image_url)

Fig. 7 illustrates a day-by-day time series of the travel time estimation variance. Due to the presence of system evolution noise Q, the estimation variance always increases when we make a travel time prediction from day d to day $d+1$, that is, $P_d^- = P_d^+ + Q_d$. After receiving traffic measurement available every day, the uncertainty associated travel time estimates is reduced through $P_d^+ = (I - K_dH)P_d^-$. The uncertainty reduction and the resulting information gain are very dramatic after the first few days of sensor deployment. After 5 or 6 days, this zig-zag pattern reaches a stable state when $P_d^+ = P_{d-1}^+$ (corresponding to the upper portion of the time series) and $P_d^+ = P_{d-1}^+$ (corresponding to the lower portion of the time series).

Due to the stochastic coverage characteristic of AVL sensor data, we can use a sample-based iterative computation scheme to compute the stable-state posterior estimation covariance matrix P^+. In particular, representative samples of $\hat{\gamma}^{m}_{d,a}$ can be first generated for each day, and then applied into the update equations (16) and (19) over multiple days to check if $\text{det}(P^+)$ converges to a constant value.

20
7.2. AVI extension with multiple paths

In the previous discussions, we assume that all AVI-equipped travelers use only a single path between each pair of AVI sensors. In the following discussion, we shift our focus from a single path case to a more complex but realistic situation with multiple used paths between a pair of AVI sensors. For simplicity, we assume the route choice probabilities for those paths can be computed from a deterministic or stochastic traffic assignment program.

This study adapts a multivariate normal (MVN) distribution to represent the route choice behavior. In particular, each route choice decision from an individual traveler can be considered as an independent Bernoulli trial from one of the K possible outcomes (i.e. paths) with probabilities $p_1, \ldots, p_k, \ldots, p_K$.

Consider an example network shown in Fig. 8, where two AVI sensors are located at nodes a and c. Travelers can take either of two routes through link sequence: (path $k=1$) $1\rightarrow 3$ or (path $k=2$) $2\rightarrow 3$, where link 3 is shared by these two paths. We now extend AVI measurement equation (6) from a single path to the following with two paths (subscripts d, i,j are omitted for notation simplicity).

\[
y'' = H'' T + \varepsilon'' = \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix} + \eta + \delta = p_1 t_1 + p_2 t_2 + t_3 + \eta + \delta
\]

where p_1 and p_2 represent the route choice probability for link 1 and 2, with $p_1 + p_2 = 1$.

y'' is the average travel time from travelers using two routes, the contribution from travelers using route 1 is $p_1(t_1 + t_3)$ and the contribution from route 2 is $p_2(t_1 + t_3)$.

η is the error term introduced by sampling variations due to multiple paths,

δ is the error term associated with using the sample average value to approximate the population mean value T, as described in Eq. (8).

The variance of multi-choice sampling variation η can be calculated by

\[
\text{var}(\eta) = \text{var}(p_1 t_1 + p_2 t_2 + t_3) = t_1^2 \text{var}(p_1) + t_2^2 \text{var}(p_2) + 2t_1 t_2 \text{cov}(p_1, p_2)
\]

(37)

Assuming there are g AVI samples observed between this AVI sensor pair, and x_k use path k, we can derive

\[
E(p_k) = E(x_k / g) = p_k, \quad \text{var}(p_k) = \text{var}(x_k) / g^2 = p_k (1 - p_k) / g, \quad \text{and} \quad \text{cov}(h_k, h_j) = -p_k p_j / g.
\]

Thus, Eq. (37) is reduced to

\[
\text{var}(\eta) = (t_2 - t_1)^2 \frac{p_1 p_2}{g}
\]

(38)

First, it is clear that the overlapping portion, link 3, does not affect the variance associated with the multi-choice sampling error. Under perfect deterministic user equilibrium conditions, all of the used routes have the same travel time, so the $\text{var}(\eta)$ further reduces to zero. Under a more realistic stochastic user equilibrium assumption, the travel time difference between different used routes will increase the range of the combined error $R = \text{var}(\varepsilon'') = \text{var}(\eta + \delta)$.
We can further extend the 2-path case to consider multiple paths on a corridor with \(K \) parallel non-overlapping routes, shown in Fig. 9. In general, the variance of the combined error increases as there are more used paths with significant travel time differences.

\[
\text{var}(\eta) = \text{var}(p_1t_1 + \cdots + p_kt_k + \cdots + p_Kt_K) = \frac{1}{g_{k,k,k>\lambda}} \sum (t_k - t_{\lambda})^2 p_k p_{\lambda}
\]

(39)

![Diagram](image)

Fig. 9. Example network with three parallel paths

8. Illustrative example and numerical experiments

8.1. Illustrative example for locating AVI sensors

In Fig. 10, we present an illustrative example with a 6-node hypothetical transportation network to demonstrate how the proposed measures of information can systematically evaluate the trade-offs between the accuracy and placement of individual AVI sensors for path travel time estimation reliability. In Fig. 10, subscript day \(d \) is omitted for simplicity. As shown in the base case, there are three traffic analysis zones at nodes \(a, d \) and \(b \), and three major origin-to-destination trips: (1) \(a \) to \(b \), (2) \(a \) to \(d \) and (3) \(d \) to \(b \), each with a unit of flow volume. \(P \) (e.g. obtainable from a historical travel time database with point detectors) leads to a trace of 12 and a determinant of 48. Among the 5 links in the corridor, link 5 from node \(f \) to \(b \) has the highest uncertainty in terms of link travel time estimation variance. We can view node \(b \) as a downtown area, and the incoming flow from the other two zones creates dramatic traffic congestion and travel time uncertainty, first on link 5 and then on link 4. For the base case, we can calculate the variance of path travel time estimates for these three OD pairs, respectively, as 12, 3 and 9, leading to a total path travel time estimation uncertainty (TU) as \(TU = 24 \).
Base case

(I) Locate additional AVI reader to reduce highest link travel time uncertainty

\[
P^* = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[Tr = 12 \quad Det = 48 \quad TU = 12 + 3 + 9 = 24\]

(II) Locate additional AVI reader to match origin-to-destination trip pairs

(1) Locate additional AVI reader to reduce highest link travel time uncertainty

\[
R = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\quad H = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[H^T R^{-1} H = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\quad P^* = \begin{bmatrix}
0.89 & -0.22 & -0.22 & -0.33 & 0 \\
-0.22 & 1.56 & -0.44 & -0.67 & 0 \\
-0.22 & -0.44 & 1.56 & -0.67 & 0 \\
-0.33 & -0.67 & -0.67 & 2 & 0 \\
0 & 0 & 0 & 0 & 0.8 \\
\end{bmatrix}
\]

\[Tr = 6.8 \quad Det = 1.07 \quad TU = 3.47 + 2.01 + 3.02 = 8.5\]

(II) Locate additional AVI reader to match origin-to-destination trip pairs

(2) Locate additional AVI reader to match origin-to-destination trip pairs

\[
R = \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\quad H = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

\[H^T R^{-1} H = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\quad P^* = \begin{bmatrix}
0.75 & -0.5 & 0 & 0 & 0 \\
-0.5 & 1 & 0 & 0 & 0 \\
0 & 0 & 1.6 & -0.6 & -0.8 \\
0 & 0 & -0.6 & 2.1 & -1.2 \\
0 & 0 & -0.8 & -1.2 & 2.4 \\
\end{bmatrix}
\]

\[Tr = 7.85 \quad Det = 1.2 \quad TU = 1.65 + 0.75 + 0.9 = 3.3\]
In both cases (I) and (II), two AVI sensors are first installed at nodes a and b. In case (I), an additional AVI sensor is located at node f so that we can obtain two pairs of end-to-end travel time measurements: from node a to node f, and from node f to node d. The second measurement directly monitors travel time dynamics on link 5. In this particular example along the linear corridor, the end-to-end travel time statistics from a to b can be explicitly determined from the above two mutually exclusive observations. In order to avoid double-counting the information gain for the same data sources, the information quantification module in this study only considers two raw measurements: from a to f, and from f to d, to update the link travel time variance covariance matrix from P^- to P^+. To do so, the measurement error matrix is assumed to be $R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and the mapping matrix $H = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$, where the first measurement from a to f covers links 1,2,3 and 4, and the second measurement from f to b covers link 5. As link 5, with the highest travel time uncertainty, is directly measured from AVI readings, its link travel time estimate variance is reduced from 4 to 0.8, but the resulting P^+ contains a large amount of correlation in its link travel time estimates for links 1 to 4. All the path travel time uncertainties for the three OD pairs have been reduced, and $TU = 8.5$.

In case (II), the third AVI sensor is installed at node d to match the nature OD trip demand pattern, which produces sensor mapping matrix $H = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$. The resulting P^+ still contains two clusters of correlations corresponding to two individual measurements from a to d and from d to b. The path travel time estimate variances for the OD pairs from a to d and from d to b are dramatically reduced to 0.75 and 0.9. Although link 5 still has a relatively large estimate variance of 2.4, its overall estimation error measure, total travel time estimation uncertainty TU is now 3.3, which is much lower than $TU = 8.5$ in case (I).

In comparison, by locating and spacing AVI sensors to naturally match the spatial trip patterns of commuters, case (II) is able to systematically balance the trade-off between the needs for monitoring local traffic variations and end-to-end trip time dynamics. It is also important to notice that, both cases (I) and (II) have the same network coverage and generate the same number of measurements every day, but they provide different information gains from a commuter/road user perspective. Thus, simple measures of information, such as traffic network coverage and the number of measurements, might not be able to quantify the system-wide uncertainty reduction and information gain for traveler information provision applications.

8.2. Sensor location design for traffic estimation with recurring conditions

In this study, we examine the performance of the proposed modeling approach through a set of experiments on a simplified Irvine, California network, which is comprised of 16 zones, 31 nodes and 80 directed link. This study considers a single path between each OD pair in this simple network.

All the experiments are performed on a computer system equipped with an Intel Core Duo 1.8GHz CPU and 2 GB memory. Shown in Table 3, a set of critical OD pairs with large flow is selected to estimate the network-wide path travel time based uncertainty. Additionally, a beam search width of 10 is used in the beam search algorithm to reduce the computational complexity. The total number of nodes in the search tree is the number of additional sensors times the beam search width. In our experiments, with standard Matlab matrix calculation functions, it takes about 30 min to compute 160 nodes in the beam search tree for this small-scale network.

In this section, we examine the proposed information measure model and sensor location algorithm for the estimation of recurring traffic conditions. With given OD flow and prior uncertainty information, three scenarios of sensor location plan are designed to compare with current sensor network.
We first conduct experiments to compare the existing point sensor network (Fig. 11a) and an optimized point sensor network plan (Fig. 11b), both with the same number (i.e. 16) of point sensors. Table 3 shows the critical path travel time estimation errors under those two scenarios. The results show that the proposed optimization model can reduce the path travel time estimation variance by an average of 34.3%, while the existing sensor plan only reduces the same measure by about 16.5%. By factoring in the OD demand volume (shown in the third column), we can compute the proposed measure of information: the total path travel time estimation variance. The base case with zero sensor produces \(TU_{\text{zero sensor}} = 114855 \), the existing locations reduce \(TU \) to 88878 (77.3% of \(TU_{\text{zero sensor}} \)), and the optimized sensor location scenario using the proposed model further decreases the system-wide uncertain to \(TU = 63586 \) (55.3% of \(TU_{\text{zero sensor}} \)). This clearly demonstrates the advantage of the proposed model in terms of improving end-to-end travel time estimation accuracy.

Fig. 11. Numerical experiment results for regular traffic pattern estimation.
Table 3
Critical Path Travel Time Estimation Error under Existing and Optimized Sensor Location Strategies

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Hourly volume</th>
<th>Prior path travel time estimation variance without sensor</th>
<th>Posterior path travel time estimation variance with existing sensors</th>
<th>% reduction in variance due to exiting sensors</th>
<th>Posterior path travel time estimation variance with optimized sensor locations</th>
<th>% reduction in variance due to optimized sensor locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>4000</td>
<td>5.87</td>
<td>5.14</td>
<td>12.44%</td>
<td>3</td>
<td>48.89%</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>6820</td>
<td>5.24</td>
<td>3.94</td>
<td>24.81%</td>
<td>2.8</td>
<td>46.56%</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>1152</td>
<td>1.85</td>
<td>1.85</td>
<td>0</td>
<td>1.32</td>
<td>28.65%</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>2480</td>
<td>5.23</td>
<td>3.54</td>
<td>32.31%</td>
<td>3.19</td>
<td>39.01%</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>832</td>
<td>4.91</td>
<td>3.61</td>
<td>26.48%</td>
<td>3</td>
<td>38.90%</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>880</td>
<td>2.81</td>
<td>2.6</td>
<td>7.47%</td>
<td>2.07</td>
<td>26.33%</td>
</tr>
<tr>
<td>12</td>
<td>16</td>
<td>680</td>
<td>4.9</td>
<td>3.21</td>
<td>34.49%</td>
<td>3.21</td>
<td>34.49%</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>4800</td>
<td>5.86</td>
<td>4.28</td>
<td>26.96%</td>
<td>3</td>
<td>48.81%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>604</td>
<td>2.81</td>
<td>2.81</td>
<td>0</td>
<td>2.47</td>
<td>12.10%</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>444</td>
<td>1.85</td>
<td>1.85</td>
<td>0</td>
<td>1.5</td>
<td>18.92%</td>
</tr>
</tbody>
</table>

In the next set of numerical experiments, we compare two scenarios with additional sensors on top of the existing sensors.

1) Add 4 point sensors on uncovered links still with large travel time variance, leading to a total 16+4=20 point sensors, shown in Fig. 11(c);

2) Add 6 AVI readers on major zones with large volume, leading to a network with 16 point sensors and 6 AVI readers, shown in Fig. 11(d).

Fig. 12 further compares the measure of uncertainty at different stages. It is interesting to observe that compared to the optimized scenario (from the scratch) with 16 sensors, this “additional point sensors” scenario (with 20 sensors) does not offer a superior uncertainty reduction performance for different OD pairs. On the other hand, compared to adding 4 point sensors to cover highly dynamic links, installing additional 6 AVI sensors does not further improve the path travel time estimation performance dramatically.

Fig. 12. Comparison of different sensor location schemes (for regular traffic estimation)
8.3. Sensor location design for traffic prediction with recurring and non-recurring conditions

Now we perform the proposed algorithm by considering both regular and non-recurring traffic conditions. As discussed in Section 7, the total traffic prediction uncertainty is computed as a probabilistic combination of recurring and non-recurring uncertainties. In this numerical experiment, we take the incident as a demonstration example, with the link based incident rates shown in Fig. 13(a). The proposed sensor location algorithm is applied in three scenarios: (1) optimized sensor network with 16 point sensors, (2) current network with additional 4 point sensors, and (3) current network with additional 6 AVI sensors. Consequentially, these three sensor network design results are plotted in Figs. 13(b-d). It is interesting to note that when considering non-recurring traffic conditions (incidents), the optimized sensor locations (Fig. 13b) are more focused on links with higher incident rates, compared to the regular pattern estimation based planning result in Fig. 11(b).

Fig. 13. Numerical experiment results under recurring and non-recurring traffic conditions
9. Conclusions

To provide effective congestion mitigation strategies, transportation engineers and planners need to systematically measure and identify both recurring and non-recurring traffic patterns through a network of sensors. The collected data are further processed and disseminated for travelers to make smart route and departure decisions. There are a variety of traditional and emerging traffic monitoring techniques, each with ability to collect real-time traffic data in different spatial and temporal resolutions. This study proposes a theoretical framework for the heterogeneous sensor network design problem. In particular, we focus on how to better construct network-wide historical travel time databases, which need to characterize both mean and estimation uncertainty of end-to-end path travel time in a regional network.

A unified Kalman filtering based travel time estimation and prediction model is first proposed in this research to integrate heterogeneous data sources through different measurement mapping matrices. Specifically, the travel time estimation model starts with the historical travel time database as prior estimates. Point-to-point sensor data and GPS probe data are mapped to a sequence of link travel times along the most likely travelled path. Through an analytical information updating equation derived from Kalman filtering, the variances of travel times on different links are estimated for possible sensor design solutions with different degree of sampling or measurement errors. The variance of travel time estimates for spatially distributed links are further assembled to calculate the overall path travel time estimation uncertainty for the entire network as the single-valued information measure. The proposed information quantification model and beam search solution algorithm can assist decision-makers to select and integrate different types of sensors, as well as to determine how, when, where to integrate them in an existing traffic sensor infrastructure.

In our on-going research, we plan to expand the research in the following ways. First, this study only focuses on the sensor design problem for estimating the mean of path travel time, and a natural extension is to assist sensor design decisions for other network-wide traffic state estimation domains, such as measuring and forecasting point-to-point travel time reliability, and incident detection probability. Second, under assumptions of normal distributions for most error terms, the proposed sensor location model is specifically designed for the minimum path travel time estimation variance criterion, and our future work should consider other crucial factors for real-world sensor network design, such as allowing log-normally distributed error terms and minimizing maximum estimation errors. Furthermore, the offline model developed in this study could be extended to a real-time traffic state estimation and prediction framework with mobile and agile sensors. The numerical experimental results (for a small-scale network) in this study also demonstrate computational challenges (due to heavy-duty matrix operations) in applying the proposed information-theoretic sensor location strategy in large-scale real-world networks, and these challenges call for more future research for developing efficient heuristic and approximation methods.

Acknowledgement

This paper is based on research work partially supported through the TRB SHRP 2 L02 project titled “Establishing Monitoring Programs for Mobility and Travel Time Reliability”. Special thanks to our colleague Jay Przybyla at the University of Utah for his careful review and comments. The work presented in this paper remains the sole responsibility of the authors.

References

